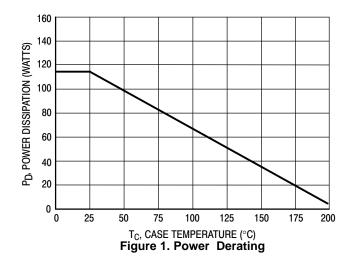
2N3055(NPN), MJ2955(PNP)

Preferred Device

Complementary Silicon Power Transistors

Complementary silicon power transistors are designed for general-purpose switching and amplifier applications.


Features

- DC Current Gain $h_{FE} = 20-70$ @ $I_C = 4$ Adc
- Collector–Emitter Saturation Voltage $V_{CE(sat)} = 1.1 \text{ Vdc (Max) } @ I_C = 4 \text{ Adc}$
- Excellent Safe Operating Area
- Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	60	Vdc
Collector–Emitter Voltage	V _{CER}	70	Vdc
Collector-Base Voltage	V _{CB}	100	Vdc
Emitter-Base Voltage	V _{EB}	7	Vdc
Collector Current – Continuous	Ic	15	Adc
Base Current	Ι _Β	7	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	P _D	115 0.657	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®

http://onsemi.com

15 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 60 VOLTS, 115 WATTS

TO-204AA (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAM

xxxx55 = Device Code

xxxx = 2N30 or MJ20

G = Pb-Free Package A = Location Code

YY = Year WW = Work Week

MEX = Country of Orgin

ORDERING INFORMATION

Device	Package	Shipping
2N3055	TO-204AA	100 Units / Tray
2N3055G	TO-204AA (Pb-Free)	100 Units / Tray
MJ2955	TO-204AA	100 Units / Tray
MJ2955G	TO-204AA (Pb-Free)	100 Units / Tray

Preferred devices are recommended choices for future use and best overall value

2N3055(NPN), MJ2955(PNP)

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.52	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS*				
Collector-Emitter Sustaining Voltage (Note 1) (I _C = 200 mAdc, I _B = 0)	V _{CEO(sus)}	60	_	Vdc
Collector–Emitter Sustaining Voltage (Note 1) (I_C = 200 mAdc, R_{BE} = 100 Ω)	V _{CER(sus)}	70	-	Vdc
Collector Cutoff Current (V _{CE} = 30 Vdc, I _B = 0)	I _{CEO}	-	0.7	mAdc
Collector Cutoff Current $(V_{CE} = 100 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc})$ $(V_{CE} = 100 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc}, T_{C} = 150^{\circ}\text{C})$	I _{CEX}	- -	1.0 5.0	mAdc
Emitter Cutoff Current (V _{BE} = 7.0 Vdc, I _C = 0)	I _{EBO}	-	5.0	mAdc
ON CHARACTERISTICS* (Note 1)				
DC Current Gain	h _{FE}	20 5.0	70 -	-
Collector–Emitter Saturation Voltage ($I_C = 4.0 \text{ Adc}$, $I_B = 400 \text{ mAdc}$) ($I_C = 10 \text{ Adc}$, $I_B = 3.3 \text{ Adc}$)	V _{CE(sat)}	-	1.1 3.0	Vdc
Base-Emitter On Voltage (I _C = 4.0 Adc, V _{CE} = 4.0 Vdc)	V _{BE(on)}	_	1.5	Vdc
SECOND BREAKDOWN				
Second Breakdown Collector Current with Base Forward Biased (V _{CE} = 40 Vdc, t = 1.0 s, Nonrepetitive)	I _{s/b}	2.87	-	Adc
DYNAMIC CHARACTERISTICS				
Current Gain – Bandwidth Product (I _C = 0.5 Adc, V _{CE} = 10 Vdc, f = 1.0 MHz)	f _T	2.5	_	MHz
*Small-Signal Current Gain (I _C = 1.0 Adc, V _{CE} = 4.0 Vdc, f = 1.0 kHz)	h _{fe}	15	120	-
*Small-Signal Current Gain Cutoff Frequency (V _{CE} = 4.0 Vdc, I _C = 1.0 Adc, f = 1.0 kHz)	f _{hfe}	10	_	kHz

^{*}Indicates Within JEDEC Registration. (2N3055)

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

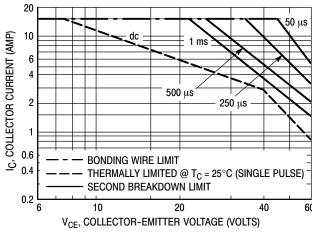


Figure 2. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 2 is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated for temperature according to Figure 1.

2N3055(NPN), MJ2955(PNP)

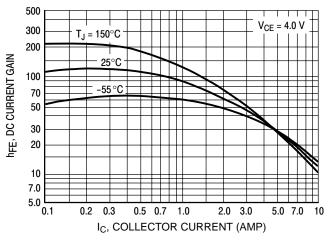


Figure 3. DC Current Gain, 2N3055 (NPN)

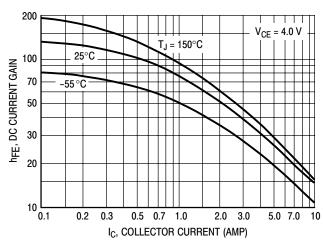


Figure 4. DC Current Gain, MJ2955 (PNP)

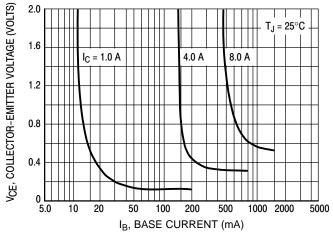


Figure 5. Collector Saturation Region, 2N3055 (NPN)

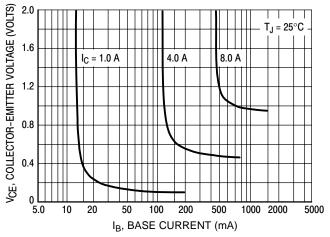


Figure 6. Collector Saturation Region, MJ2955 (PNP)

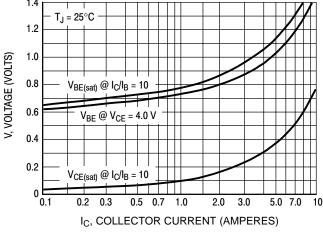


Figure 7. "On" Voltages, 2N3055 (NPN)

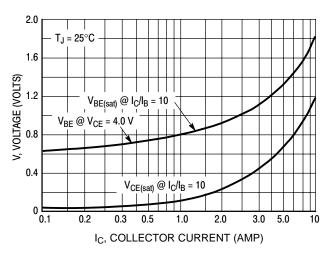
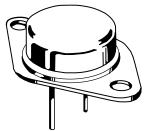
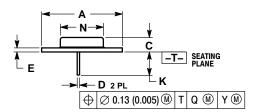
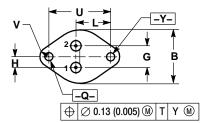



Figure 8. "On" Voltages, MJ2955 (PNP)





TO-204 (TO-3) **CASE 1-07 ISSUE Z**

DATE 05/18/1988

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	1.550	REF	39.37 REF	
В		1.050		26.67
С	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
Е	0.055	0.070	1.40	1.77
G	0.430 BSC		10.92 BSC	
Н	0.215	0.215 BSC		BSC
K	0.440	0.480	11.18	12.19
L	0.665 BSC		16.89 BSC	
N		0.830		21.08
Q	0.151	0.165	3.84	4.19
U	1.187	1.187 BSC		BSC
٧	0.131	0.188	3.33	4.77

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR	STYLE 2: PIN 1. BASE 2. COLLECTOR CASE: EMITTER	STYLE 3: PIN 1. GATE 2. SOURCE CASE: DRAIN	STYLE 4: PIN 1. GROUND 2. INPUT CASE: OUTPUT	STYLE 5: PIN 1. CATHODE 2. EXTERNAL TRIP/DELAY CASE: ANODE
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	
PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE #1	PIN 1. ANODE #1	
2. EMITTER	2. OPEN	2. CATHODE #2	2. ANODE #2	
CASE: COLLECTOR	CASE: CATHODE	CASE: ANODE	CASE: CATHODE	

ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative